
CredShields

Smart Contract Audit

April 15th, 2024 • CONFIDENTIAL

Description

This document details the process and result of the staking smart contract audit performed

by CredShields Technologies PTE. LTD. on behalf of Arcana between April 10th, 2024, and

April 13th, 2024. And a retest was performed on April 15th, 2024.

Author

Shashank (Co-founder, CredShields)

shashank@CredShields.com

Reviewers

Aditya Dixit (Research Team Lead)

aditya@CredShields.com

Prepared for

Arcana

Table of Contents

1. Executive Summary 3
State of Security 4

2. Methodology 5
2.1 Preparation phase 5

2.1.1 Scope 6
2.1.2 Documentation 6
2.1.3 Audit Goals 6

2.2 Retesting phase 7
2.3 Vulnerability classification and severity 7
2.4 CredShields staff 10

3. Findings 11
3.1 Findings Overview 11

3.1.1 Vulnerability Summary 11
3.1.2 Findings Summary 13

4. Remediation Status 16
5. Bug Reports 18

Bug ID #1 18
Bypass the lockupDuration period in withdraw() function 18

Bug ID #2 [Fixed] 21
Floating and Outdated Pragma 21

Bug ID #3 [Fixed] 23
Use Ownable2Step 23

Bug ID #4 [Fixed] 26
Missing Events in Important Functions 26

Bug ID #5 [Fixed] 28
Functions should be declared External 28

Bug ID #6 [Fixed] 29
Incorrect Documentation 29

Bug ID #7 [Fixed] 31
Gas Optimization in Require Statements 31

Bug ID #8 [Fixed] 32
Code Optimization by using max and min 32

Bug ID #9 [Fixed] 34

1

Cheaper Conditional Operators 34
Bug ID #10 [Fixed] 36

Gas Optimization for State Variables 36
Bug ID #11 [Fixed] 38

Dead Code 38
6. Disclosure 39

2

1. Executive Summary

Arcana engaged CredShields to perform a smart contract audit from April 10th, 2024, to

April 13th, 2024. During this timeframe, Eleven (11) vulnerabilities were identified. A retest

was performed on April 15th, 2024, and all the bugs have been addressed.

During the audit, One (1) vulnerability was found with a severity rating of either High or

Critical. These vulnerabilities represent the greatest immediate risk to "Arcana" and should

be prioritized for remediation, and fortunately, none were found.

The table below shows the in-scope assets and a breakdown of findings by severity per

asset. Section 2.3 contains more information on how severity is calculated.

Assets in Scope Critical High Medium Low info Gas Σ

staking smart contract 0 1 0 3 2 5 11

0 1 0 3 2 5 11

Table: Vulnerabilities Per Asset in Scope

The CredShields team conducted the security audit to focus on identifying vulnerabilities in

staking smart contract’s scope during the testing window while abiding by the policies set

forth by staking Arcana’s team.

3

State of Security

To maintain a robust security posture, it is essential to continuously review and improve

upon current security processes. Utilizing CredShields' continuous audit feature allows

both Arcana's internal security and development teams to not only identify specific

vulnerabilities, but also gain a deeper understanding of the current security threat

landscape.

To ensure that vulnerabilities are not introduced when new features are added, or code is

refactored, we recommend conducting regular security assessments. Additionally, by

analyzing the root cause of resolved vulnerabilities, the internal teams at Arcana can

implement both manual and automated procedures to eliminate entire classes of

vulnerabilities in the future. By taking a proactive approach, Arcana can future-proof its

security posture and protect its assets.

4

2. Methodology

Arcana engaged CredShields to perform an Arcana Smart Contract audit. The following

sections cover how the engagement was put together and executed.

2.1 Preparation phase

The CredShields team meticulously reviewed all provided documents and comments in the

smart-contract code to gain a thorough understanding of the contract's features and

functionalities. They meticulously examined all functions and created a mind map to

systematically identify potential security vulnerabilities, prioritizing those that were more

critical and business-sensitive for the refactored code. To confirm their findings, the team

deployed a self-hosted version of the smart contract and performed verifications and

validations during the audit phase.

A testing window from April 10th, 2024, to April 13th, 2024, was agreed upon during the

preparation phase.

5

2.1.1 Scope

During the preparation phase, the following scope for the engagement was agreed-upon:

IN SCOPE ASSETS

Phase 1
https://github.com/arcana-network/staking-platform-fixed-apy/tree/3c5f2987df27a
30cfac6d746b5515a3aee9db9d7/contracts

Phase 2
https://github.com/arcana-network/staking-platform-fixed-apy/tree/ad8b026d4c76
64df75174a82e004a8bd6dc39cea/contracts

Table: List of Files in Scope

2.1.2 Documentation

Documentation was not required as the code was self-sufficient for understanding

the project.

2.1.3 Audit Goals

CredShields uses both in-house tools and manual methods for comprehensive smart

contract security auditing. The majority of the audit is done by manually reviewing the

contract source code, following SWC registry standards, and an extended industry standard

self-developed checklist. The team places emphasis on understanding core concepts,

preparing test cases, and evaluating business logic for potential vulnerabilities.

6

https://github.com/arcana-network/staking-platform-fixed-apy/tree/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts
https://github.com/arcana-network/staking-platform-fixed-apy/tree/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts
https://github.com/arcana-network/staking-platform-fixed-apy/tree/ad8b026d4c7664df75174a82e004a8bd6dc39cea/contracts
https://github.com/arcana-network/staking-platform-fixed-apy/tree/ad8b026d4c7664df75174a82e004a8bd6dc39cea/contracts

2.2 Retesting phase

Arcana is actively partnering with CredShields to validate the remediations implemented

towards the discovered vulnerabilities.

2.3 Vulnerability classification and severity

CredShields follows OWASP's Risk Rating Methodology to determine the risk associated

with discovered vulnerabilities. This approach considers two factors - Likelihood and Impact

- which are evaluated with three possible values - Low, Medium, and High, based on

factors such as Threat agents, Vulnerability factors, Technical and Business Impacts. The

overall severity of the risk is calculated by combining the likelihood and impact estimates.

Overall, the categories can be defined as described below -

1. Informational

We prioritize technical excellence and pay attention to detail in our coding practices.

Our guidelines, standards, and best practices help ensure software stability and

reliability. Informational vulnerabilities are opportunities for improvement and do

7

not pose a direct risk to the contract. Code maintainers should use their own

judgment on whether to address them.

2. Low

Low-risk vulnerabilities are those that either have a small impact or can't be

exploited repeatedly or those the client considers insignificant based on their

specific business circumstances.

3. Medium

Medium-severity vulnerabilities are those caused by weak or flawed logic in the code

and can lead to exfiltration or modification of private user information. These

vulnerabilities can harm the client's reputation under certain conditions and should

be fixed within a specified timeframe.

4. High

High-severity vulnerabilities pose a significant risk to the Smart Contract and the

organization. They can result in the loss of funds for some users, may or may not

require specific conditions, and are more complex to exploit. These vulnerabilities

can harm the client's reputation and should be fixed immediately.

5. Critical

Critical issues are directly exploitable bugs or security vulnerabilities that do not

require specific conditions. They often result in the loss of funds and Ether from

Smart Contracts or users and put sensitive user information at risk of compromise

8

or modification. The client's reputation and financial stability will be severely

impacted if these issues are not addressed immediately.

6. Gas

To address the risk and volatility of smart contracts and the use of gas as a method

of payment, CredShields has introduced a "Gas" severity category. This category

deals with optimizing code and refactoring to conserve gas.

9

2.4 CredShields staff

The following individual at CredShields managed this engagement and produced this

report:

● Shashank, Co-founder CredShields

○ shashank@CredShields.com

Please feel free to contact this individual with any questions or concerns you have around

the engagement or this document.

10

3. Findings

This chapter contains the results of the security assessment. Findings are sorted by their

severity and grouped by the asset and SWC classification. Each asset section will include a

summary. The table in the executive summary contains the total number of identified

security vulnerabilities per asset per risk indication.

3.1 Findings Overview

3.1.1 Vulnerability Summary

During the security assessment, Eleven (11) security vulnerabilities were identified in the

asset.

VULNERABILITY TITLE SEVERITY SWC | Vulnerability Type

Bypass the lockupDuration period in
withdraw() function

High Business Logic Issue

Floating and Outdated Pragma Low Floating Pragma (SWC-103)

Use Ownable2Step Low Missing Best Practices

Missing Events in Important Functions Low Missing Best Practices

Functions should be declared External Informational Best Practices

Incorrect Documentation Informational Improper Documentation

Gas Optimization in Require Statements Gas Gas Optimization

11

Code Optimization by using max and min Gas Gas Optimization

Cheaper Conditional Operators Gas Gas Optimization

Gas Optimization for State Variables Gas Gas Optimization

Dead Code Gas Gas Optimization

Table: Findings in Smart Contracts

12

3.1.2 Findings Summary

SWC ID SWC Checklist Test Result Notes

SWC-100 Function Default Visibility Not
Vulnerable

Not applicable after v0.5.X
(Currently using solidity v >=
0.8.6)

SWC-101 Integer Overflow and Underflow Not
Vulnerable

The issue persists in

versions before v0.8.X.

SWC-102 Outdated Compiler Version Not
Vulnerable

Version 0^.8.0 and above is
used

SWC-103 Floating Pragma Not
Vulnerable

Contract uses floating
pragma

SWC-104 Unchecked Call Return Value Not
Vulnerable

call() is not used

SWC-105 Unprotected Ether Withdrawal Not
Vulnerable

Appropriate function
modifiers and require
validations are used on
sensitive functions that
allow token or ether
withdrawal.

SWC-106 Unprotected SELFDESTRUCT
Instruction

Not
Vulnerable

selfdestruct() is not used
anywhere

SWC-107 Reentrancy Not
Vulnerable

No notable functions were
vulnerable to it.

SWC-108 State Variable Default Visibility Not
Vulnerable

Not Vulnerable

SWC-109 Uninitialized Storage Pointer Not
Vulnerable

Not vulnerable after
compiler version, v0.5.0

13

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://swcregistry.io/docs/SWC-105
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-109

SWC-110 Assert Violation Not
Vulnerable

Asserts are not in use.

SWC-111 Use of Deprecated Solidity
Functions

Not
Vulnerable

None of the deprecated
functions like
block.blockhash(), msg.gas,
throw, sha3(), callcode(),
suicide() are in use

SWC-112 Delegatecall to Untrusted Callee Not
Vulnerable

Not Vulnerable.

SWC-113 DoS with Failed Call Not
Vulnerable

No such function was
found.

SWC-114 Transaction Order Dependence Not
Vulnerable

Not Vulnerable.

SWC-115 Authorization through tx.origin Not
Vulnerable

tx.origin is not used
anywhere in the code

SWC-116 Block values as a proxy for time Not
Vulnerable

Block.timestamp is not used

SWC-117 Signature Malleability Not
Vulnerable

Not used anywhere

SWC-118 Incorrect Constructor Name Not
Vulnerable

All the constructors are
created using the
constructor keyword rather
than functions.

SWC-119 Shadowing State Variables Not
Vulnerable

Not applicable as this won’t
work during compile time
after version 0.6.0

SWC-120 Weak Sources of Randomness
from Chain Attributes

Not
Vulnerable

Random generators are not
used.

SWC-121 Missing Protection against
Signature Replay Attacks

Not
Vulnerable

No such scenario was found

14

https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-118
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-121

SWC-122 Lack of Proper Signature
Verification

Not
Vulnerable

Not used anywhere

SWC-123 Requirement Violation Not
Vulnerable

Not vulnerable

SWC-124 Write to Arbitrary Storage
Location

Not
Vulnerable

No such scenario was found

SWC-125 Incorrect Inheritance Order Not
Vulnerable

No such scenario was found

SWC-126 Insufficient Gas Griefing Not
Vulnerable

No such scenario was found

SWC-127 Arbitrary Jump with Function
Type Variable

Not
Vulnerable

Jump is not used.

SWC-128 DoS With Block Gas Limit Not
Vulnerable

Not Vulnerable.

SWC-129 Typographical Error Not
Vulnerable

No such scenario was found

SWC-130 Right-To-Left-Override control
character (U+202E)

Not
Vulnerable

No such scenario was found

SWC-131 Presence of unused variables Not
Vulnerable

No such scenario was found

SWC-132 Unexpected Ether balance Not
Vulnerable

No such scenario was found

SWC-133 Hash Collisions With Multiple
Variable Length Arguments

Not
Vulnerable

abi.encodePacked() or other
functions are not used.

SWC-134 Message call with hardcoded gas
amount

Not
Vulnerable

Not used anywhere in the
code

SWC-135 Code With No Effects Not
Vulnerable

No such scenario was
found

SWC-136 Unencrypted Private Data
On-Chain

Not
Vulnerable

No such scenario was found

15

https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-123
https://swcregistry.io/docs/SWC-124
https://swcregistry.io/docs/SWC-124
https://swcregistry.io/docs/SWC-125
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-127
https://swcregistry.io/docs/SWC-127
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-129
https://swcregistry.io/docs/SWC-130
https://swcregistry.io/docs/SWC-130
https://swcregistry.io/docs/SWC-131
https://swcregistry.io/docs/SWC-132
https://swcregistry.io/docs/SWC-133
https://swcregistry.io/docs/SWC-133
https://swcregistry.io/docs/SWC-134
https://swcregistry.io/docs/SWC-134
https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-136
https://swcregistry.io/docs/SWC-136

4. Remediation Status

Arcana is actively partnering with CredShields from this engagement to validate the

discovered vulnerabilities' remediations. A retest was performed on April 15th, 2024,

and all the issues have been addressed.

Also, the table shows the remediation status of each finding.

VULNERABILITY TITLE SEVERITY REMEDIATION
STATUS

Bypass the lockupDuration period in withdraw()
function

High Fixed
[15/04/2024]

Floating and Outdated Pragma Low Fixed
[15/04/2024]

Use Ownable2Step Low Fixed
[15/04/2024]

Missing Events in Important Functions Low Fixed
[15/04/2024]

Functions should be declared External Informational Fixed
[15/04/2024]

Incorrect Documentation Informational Fixed
[15/04/2024]

Gas Optimization in Require Statements Gas Fixed
[15/04/2024]

Code Optimization by using max and min Gas Fixed

16

[15/04/2024]

Cheaper Conditional Operators Gas Fixed
[15/04/2024]

Gas Optimization for State Variables Gas Fixed
[15/04/2024]

Dead Code Gas Fixed
[15/04/2024]

Table: Summary of findings and status of remediation

17

5. Bug Reports

Bug ID #1

Bypass the lockupDuration period in withdraw() function

Vulnerability Type
Business Logic Issue

Severity
High

Description:
In the provided contract, the withdraw() function allows users to withdraw their staked
tokens before the lockup period ends. In the _updateRewards() function the user's start
time (_userStartTime) is initialized to zero if they stake tokens before the staking period
starts. This results in the calculation of rewards based on the startTime to the current time.
Consequently, users can withdraw their tokens before the lockup duration because
_userStartTime[_msgSender()] will be set to zero because user staked tokens before staking
start then (block.timestamp - _userStartTime[_msgSender()]) is greater than lockupDuration
that's why user can withdraw tokens using withdraw() before lockupDuration ends.

Affected Variables and Line Numbers
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/main/contracts/

staking/StakingPlatform.sol#L114-L135
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/main/contracts/

staking/StakingPlatform.sol#L289-L294

Impacts

18

https://github.com/arcana-network/staking-platform-fixed-apy/blob/main/contracts/staking/StakingPlatform.sol#L114-L135
https://github.com/arcana-network/staking-platform-fixed-apy/blob/main/contracts/staking/StakingPlatform.sol#L114-L135
https://github.com/arcana-network/staking-platform-fixed-apy/blob/main/contracts/staking/StakingPlatform.sol#L289-L294
https://github.com/arcana-network/staking-platform-fixed-apy/blob/main/contracts/staking/StakingPlatform.sol#L289-L294

Users can withdraw their staked tokens before the lockup duration ends, thereby
bypassing the intended lockup period requirement. Allowing early withdrawals undermines
the lockup mechanism's purpose, resulting in users receiving rewards without fulfilling the
lockup duration requirement. This can lead to a loss of incentives for users to stake their
tokens for the intended duration.

Remediation
Ensure that the user's start time (_userStartTime) is correctly initialized to the beginning of
the staking period when they stake tokens, regardless of whether they stake before the
staking period starts. This ensures that the reward calculation is based on the actual start
time of the user's stake.

Test Case

describe("Withdraw Bypass:", () => {
it("Should bypasss the lockupDuration check and withdraw the amount after

staking is started", async function () {
// User deposits tokens
await token
.connect(user)
.approve(stakingPlatform.address, depositAmount);
await stakingPlatform.connect(user).deposit(depositAmount);

const blockTimestamp = (await ethers.provider.getBlock("latest"))
.timestamp;
console.log("time while depositing the token: ", blockTimestamp);

// Start staking period
await stakingPlatform.connect(deployer).startStaking();

// Fast forward to 8 days
const timeToPass = 8 * 24 * 60 * 60;
await ethers.provider.send("evm_increaseTime", [timeToPass]);
await ethers.provider.send("evm_mine");

const blockTimestampAfter = (await ethers.provider.getBlock("latest"))
.timestamp;
console.log("time after staking started: ", blockTimestampAfter);

19

// Record balances before withdrawal
const initialUserBalance = await token.balanceOf(user.address);

const rewardsToClaim = await stakingPlatform.rewardOf(user.address);

// User withdraws their stake
await stakingPlatform.connect(user).withdraw(depositAmount);

// Ensure user's token balance increased by the withdrawn amount
const finalUserBalance = await token.balanceOf(user.address);
expect(finalUserBalance).to.equal(
initialUserBalance.add(depositAmount).add(rewardsToClaim)
);
});

});

Retest
This vulnerability has been fixed by introducing _getStartTime() function in the contract.
Ref: b82b301bf1333e6165fac33384bc27b3043b3a17

20

https://github.com/arcana-network/staking-platform-fixed-apy/commit/b82b301bf1333e6165fac33384bc27b3043b3a17

Bug ID #2 [Fixed]

Floating and Outdated Pragma

Vulnerability Type
Floating Pragma (SWC-103)

Severity
Low

Description
Locking the pragma helps ensure that the contracts do not accidentally get deployed using
an older version of the Solidity compiler affected by vulnerabilities.
The contract allowed floating or unlocked pragma to be used, i.e., 0.8.10. This allows the
contracts to be compiled with all the solidity compiler versions above the limit specified.
The following contracts were found to be affected -

Affected Code
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L2
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/IStakingPlatform.sol#L2
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/token/Token.sol#L2-L3

Impacts
If the smart contract gets compiled and deployed with an older or too recent version of the
solidity compiler, there’s a chance that it may get compromised due to the bugs present in
the older versions or unidentified exploits in the new versions.
Incompatibility issues may also arise if the contract code does not support features in other
compiler versions, therefore, breaking the logic.
The likelihood of exploitation is really low therefore this is only informational.

Remediation

21

https://swcregistry.io/docs/SWC-103
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L2
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L2
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/IStakingPlatform.sol#L2
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/IStakingPlatform.sol#L2
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/token/Token.sol#L2-L3
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/token/Token.sol#L2-L3

Keep the compiler versions consistent in all the smart contract files. Do not allow floating
pragmas anywhere. It is suggested to use the 0.8.23 pragma version
Reference: https://swcregistry.io/docs/SWC-103

Retest
The pragma is now fixed and updated to 0.8.23.
Ref: f3ac98a1899202549d0ea61dc1fe2a5e684389cc

22

https://swcregistry.io/docs/SWC-103
https://github.com/arcana-network/staking-platform-fixed-apy/commit/f3ac98a1899202549d0ea61dc1fe2a5e684389cc

Bug ID #3 [Fixed]

Use Ownable2Step

Vulnerability Type
Missing Best Practices

Severity
Low

Description
The "Ownable2Step" pattern is an improvement over the traditional "Ownable" pattern,
designed to enhance the security of ownership transfer functionality in a smart contract.
Unlike the original "Ownable" pattern, where ownership can be transferred directly to a
specified address, the "Ownable2Step" pattern introduces an additional step in the
ownership transfer process. Ownership transfer only completes when the proposed new
owner explicitly accepts the ownership, mitigating the risk of accidental or unintended
ownership transfers to mistyped addresses.

Affected Code
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L17

Impacts
Without the "Ownable2Step" pattern, the contract owner might inadvertently transfer
ownership to an unintended or mistyped address, potentially leading to a loss of control
over the contract. By adopting the "Ownable2Step" pattern, the smart contract becomes
more resilient against external attacks aimed at seizing ownership or manipulating the
contract's behaviour.

Remediation
It is recommended to use either Ownable2Step or Ownable2StepUpgradeable depending
on the smart contract.

23

https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L17
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L17

Retest
The contracts are now using Ownable2Step instead of Ownable.
Ref: 9e29524fe4eac8ade28257c8fc821882e1448979

24

https://github.com/arcana-network/staking-platform-fixed-apy/commit/9e29524fe4eac8ade28257c8fc821882e1448979

25

Bug ID #4 [Fixed]

Missing Events in Important Functions

Vulnerability Type
Missing Best Practices

Severity
Low

Description
Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log — a special data structure in the blockchain.
These logs are associated with the address of the contract which can then be used by
developers and auditors to keep track of the transactions.

The contract was found to be missing these events on certain critical functions which would
make it difficult or impossible to track these transactions off-chain.

Affected Code
The following functions were affected -

● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a
30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L303-L307

● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a
30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L313-L315

● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a
30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L321-L325

Impacts
Events are used to track the transactions off-chain and missing these events on critical
functions makes it difficult to audit these logs if they’re needed at a later stage.

26

https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L303-L307
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L303-L307
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L313-L315
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L313-L315
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L321-L325
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L321-L325

Remediation
Consider emitting events for important functions to keep track of them.

Retest
Important functions are now emitting events.
Ref: ce4c5afb0d14f16f1279a3be001882a8a941f24d

27

https://github.com/arcana-network/staking-platform-fixed-apy/commit/ce4c5afb0d14f16f1279a3be001882a8a941f24d

Bug ID #5 [Fixed]

Functions should be declared External

Vulnerability Type
Best Practices

Severity
Informational

Description
Public functions that are never called by a contract should be declared external in order to
conserve gas.
The following functions were declared as public but were not called anywhere in the
contract, making public visibility useless.

Affected Code
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L331-L333
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L339-L341

Impacts
Smart Contracts are required to have effective Gas usage as they cost real money and each
function should be monitored for the amount of gas it costs to make it gas efficient.
“public” functions cost more Gas than “external” functions.

Remediation
Use the “external” state visibility for functions that are never called from inside the
contract.

Retest
The functions are updated to external visibility.
Ref: f833642f468bc3496a3b4059645a4ac694fd622a

28

https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L331-L333
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L331-L333
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L339-L341
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L339-L341
https://github.com/arcana-network/staking-platform-fixed-apy/commit/f833642f468bc3496a3b4059645a4ac694fd622a

Bug ID #6 [Fixed]

Incorrect Documentation

Vulnerability Type
Improper Documentation

Severity
Informational

Description
The solidity code for the withdrawResidualBalance() function contained a discrepancy
between the documented behavior and the actual implementation. The documentation
incorrectly stated that the function could only be called "one year after the end of the
staking period" and specified that "initial stakeholders' deposits cannot be claimed."
However, the implemented logic allowed withdrawal after only 90 days following the end of
the staking period. This inconsistency led to misleading information about the timing
constraints for withdrawing residual balances.

Vulnerable Code
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L174

Impacts
Even though there’s no actual impact to user funds since only the residual balance is
transferred, it may give the owners a false pretext on the number of days they have to wait
before transferring all the residual tokens.

Remediation
It is recommended to update the documentation to show the actual behavior of the
contracts.

Retest
The contract and documentation are updated to 15 days instead of 90 days and a year.

29

https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L174
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L174

Ref: fe557cfd3fbf5b0aabfe654c2e4fa6542c81afad

30

https://github.com/arcana-network/staking-platform-fixed-apy/commit/fe557cfd3fbf5b0aabfe654c2e4fa6542c81afad

Bug ID #7 [Fixed]

Gas Optimization in Require Statements

Vulnerability Type
Gas Optimization

Severity
Gas

Description
The require() statement takes an input string to show errors if the validation fails.
The strings inside these functions that are longer than 32 bytes require at least one
additional MSTORE, along with additional overhead for computing memory offset and
other parameters. For this purpose, having strings lesser than 32 bytes saves a significant
amount of gas. Once such example is given below:

Affected Code
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L93-L96

Impacts
Having longer require strings than 32 bytes cost a significant amount of gas.

Remediation
It is recommended to go through all the require() statements present in the contract and
shorten the strings passed inside them to fit under 32 bytes. This will decrease the gas
usage at the time of deployment and at runtime when the validation condition is met.

Retest
The require statement is shortened to less than 32 bytes to save gas.
Ref: ac941a08bbd52b288a03b88f8ff88c11429581f1

31

https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L93-L96
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L93-L96
https://github.com/arcana-network/staking-platform-fixed-apy/commit/ac941a08bbd52b288a03b88f8ff88c11429581f1

Bug ID #8 [Fixed]

Code Optimization by using max and min

Vulnerability Type
Gas Optimization

Severity
Gas

Description:
In Solidity contract code, optimizing expressions involving powers of 2, such as 2**256, by
using the built-in type(uint256).max. Max constants can lead to improved code readability
and gas efficiency. The original code utilizes 2**256 to calculate the maximum storage
capacity of a uint256 data type, but this expression can be replaced with more expressive
and gas-efficient alternatives.

Affected Code:
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L56

Impacts:
Using 2**256 in code can hinder readability and result in higher gas costs. Gas
consumption is a crucial factor in determining the cost of executing smart contracts on the
Ethereum blockchain. Optimizing such expressions contributes to more concise and
understandable code, while also potentially reducing the gas fees associated with contract
deployment and execution.

Remediation:
To optimize code involving powers of 2, developers should replace expressions like 2**256
with type(uint256).max for maximum values is essential to note that type(uint256).max is
equivalent to 2**256 - 1.

Retest

32

https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L56
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L56

This is fixed by using the updated type(uint256).max syntax.
Ref: ac941a08bbd52b288a03b88f8ff88c11429581f1

33

https://github.com/arcana-network/staking-platform-fixed-apy/commit/ac941a08bbd52b288a03b88f8ff88c11429581f1

Bug ID #9 [Fixed]

Cheaper Conditional Operators

Vulnerability Type
Gas Optimization

Severity
Gas

Description
Upon reviewing the code, it has been observed that the contract uses conditional
statements involving comparisons with unsigned integer variables. Specifically, the contract
employs the conditional operators x != 0 and x > 0 interchangeably. However, it's important
to note that during compilation, x != 0 is generally more cost-effective than x > 0 for
unsigned integers within conditional statements.

Affected Code
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L92
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L124
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L131
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L154
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L182
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L279

Impacts

34

https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L92
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L92
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L124
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L124
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L131
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L131
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L154
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L154
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L182
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L182
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L279
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L279

Employing x != 0 in conditional statements can result in reduced gas consumption
compared to using x > 0. This optimization contributes to cost-effectiveness in contract
interactions.

Remediation
Whenever possible, use the x != 0 conditional operator instead of x > 0 for unsigned integer
variables in conditional statements.

Retest
This is fixed by using != instead of >.
Ref: ac941a08bbd52b288a03b88f8ff88c11429581f1

35

https://github.com/arcana-network/staking-platform-fixed-apy/commit/ac941a08bbd52b288a03b88f8ff88c11429581f1

Bug ID #10 [Fixed]

Gas Optimization for State Variables

Vulnerability Type
Gas Optimization

Severity
Gas

Description
In Solidity, the compound assignment operators ‘+=’ and ‘-=’ tend to consume more gas
compared to the basic addition and subtraction operators (‘+’ and ‘-’, respectively). As a
result, when you use ‘x += y’, it typically incurs a higher gas cost than using ‘x = x + y’.

Affected Code
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L105
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L134
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L159

Impacts
By using basic operators or optimizing code, you can decrease the gas costs associated
with smart contract transactions. This can make your application more cost-effective.

Remediation
Replace += and -= with the basic + and - operators whenever feasible. This can help reduce
gas consumption, especially when working with large-scale operations.

Retest
This is fixed.
Ref: ef616214835be2bcdddc1f2f6ffc9f7a5a4ffd14

36

https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L105
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L105
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L134
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L134
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L159
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L159
https://github.com/arcana-network/staking-platform-fixed-apy/commit/ef616214835be2bcdddc1f2f6ffc9f7a5a4ffd14

37

Bug ID #11 [Fixed]

Dead Code

Vulnerability Type
Code With No Effects - SWC-135

Severity
Gas

Description
Solidity is a Gas-constrained language. Having unused code incurs extra gas usage when
deploying the contract.
The contract was found to be importing the file hardhat/console.sol which is not used
anywhere in the code.

Vulnerable Code
● https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a

30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L10

Impacts
Having dead and unused code in the contract leads to excessive gas usage when deploying
on production chains.

Remediation
It is recommended to remove the import statement of hardhat/console.log.

Retest
This is updated and the dead code is removed.

38

https://swcregistry.io/docs/SWC-135
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L10
https://github.com/arcana-network/staking-platform-fixed-apy/blob/3c5f2987df27a30cfac6d746b5515a3aee9db9d7/contracts/staking/StakingPlatform.sol#L10

6. Disclosure

The Reports provided by CredShields is not an endorsement or condemnation of any

specific project or team and do not guarantee the security of any specific project. The

contents of this report are not intended to be used to make decisions about buying or

selling tokens, products, services, or any other assets and should not be interpreted as

such.

Emerging technologies such as Smart Contracts and Solidity carry a high level of technical

risk and uncertainty. CredShields does not provide any warranty or representation about

the quality of code, the business model or the proprietors of any such business model, or

the legal compliance of any business. The report is not intended to be used as investment

advice and should not be relied upon as such.

CredShields Audit team is not responsible for any decisions or actions taken by any third

party based on the report.

39

